10 Buone pratiche di controllo per modelli PRO_SAM

In questo post tratteremo alcuni suggerimenti per il controllo dei modelli a telaio equivalente di strutture in muratura create con PRO_SAMplugin di PRO_SAP che si collega al motore di calcolo SAM II sviluppato dal Professor Magenes e dagli Ingg. Manzini e Morandi.

A causa della loro natura non lineare, le analisi Pushover rappresentano una tipologia di analisi particolarmente delicata che non può essere applicata a qualsiasi edificio senza cognizione di causa. Difatti sono analisi concepite per carpire quello che è il comportamento globale della struttura nel suo insieme al fine di individuare una curva di capacità Forza – Spostamento in grado di definirne la duttilità.

La normativa

La normativa prevede che le analisi Pushover vengano applicate a strutture “sufficientemente regolari” e, per strutture in cemento armato, è necessario un livello di conoscenza LC2 o LC3 come indicato nella tabella C8.5.IV, ovvero non concede la possibilità di eseguire analisi Pushover se le armature derivano da un progetto simulato.

Ma cosa si intende per strutture “sufficientemente regolari”? La normativa lega la regolarità alla massa eccitata, infatti per le prime due distribuzioni di forza del gruppo 1 è necessario che ci sia un modo di vibrare che da solo attiva il 75% di massa (e questo capita solo per strutture molto regolari), mentre per la terza distribuzione del gruppo 1 occorre considerare un numero di modi che attivi almeno l’85% di massa.

Per strutture in muratura la normativa è più concessiva in quanto al paragrafo 7.8.1.5.4 indica la possibilità di applicare le prime due distribuzioni del gruppo 1 purché il modo fondamentale attivi almeno il 60% di massa invece del 75%.

La modellazione

Il modello a telaio equivalente nella muratura è una rappresentazione semplificata della struttura dove il continuo viene convertito in elementi D2 del tipo maschi, fasce e conci rigidi. È fondamentale che il progettista semplifichi la geometria il più possibile evitando di modellare elementi non strutturali e cercando di identificare gli impalcati chiaramente. Nel caso di cambi di quota tra solai di quantità trascurabili è consigliabile modellare tutto l’impalcato alla stessa quota. Nel caso di elementi strutturali di lunghezza trascurabile (ad esempio minore di 1 metro o con luce minore di 1/3 dell’altezza di interpiano) si può scegliere di modellarli come aste lineari in maniera che servano solo a portare i carichi verticali e non influenzino le curve di capacità.

Una condizione necessaria affinché sia possibile analizzare la struttura è che questa sia dotata di un COMPORTAMENTO GLOBALE dato per lo più dalla presenza di piano rigido, pareti ammorsate e una buona situazione di verifica ai carichi verticali.

PRO_SAM consente di modellare diverse tipologie di solai:

  • Non rigidi, che trasmettono solo carico;
  • Rigidi, con una rigidezza membranale personalizzabile in ciascun solaio;
  • Infinitamente rigidi, grazie alle impostazioni del pannello di controllo di PRO_SAM.

L’utilizzo del piano infinitamente rigido comporta una notevole semplificazione del modello numerico poiché ogni impalcato si riduce ad avere 3 gradi di libertà invece di 6*nn che si hanno senza tale ipotesi, dove nn rappresenta il numero di nodi appartenenti all’impalcato. Questa riduzione di g.d.l. comporta, oltre a una riduzione dell’onere computazionale, una migliore convergenza delle analisi globali. Si ricorda che l’opzione di piano infinitamente rigido entra in gioco negli impalcati in cui almeno un pannello di solaio possiede la  proprietà di piano rigido.

Nel caso la struttura non possieda piano rigido le analisi globali potrebbero non arrivare a convergenza, ma anche la struttura reale presumibilmente non avrà un comportamento globale in quanto i cinematismi locali precederanno i collassi globali.

In questi casi è opportuno procedere con:

  • Analisi delle singole pareti nel piano (Pushover di piano isolando i telai singolarmente);
  • Analisi dei cinematismi fuori piano;
  • Analisi Pushover con ipotesi di piano rigido per valutare il comportamento globale della struttura post (eventuale) intervento di consolidamento dei solai.

Controllo dei modelli PRO_SAM

Di seguito si riporta una lista di controlli che è bene effettuare sia in fase di modellazione che alla fine di essa per facilitare le analisi al solutore:

1_ CHECK DATI STRUTTURA: Eseguire spesso il check dati struttura anche in fase di modellazione senza necessariamente esserne giunti al termine aiuta a individuare eventuali errori man mano che si modella. Una volta completata la modellazione si consiglia di nascondere solai e pannelli per assicurarsi che gli elementi strutturali siano correttamente collegati tra loro e non siano presenti labilità. Per fare ciò può essere molto comodo utilizzare il comando “Esploso”.

2_ CHECK SOLAI: È consigliato disattivare la visualizzazione dei pannelli SAM in fase di generazione solai per evitare che questi si aggancino ai nodi dei pannelli SAM, è infatti preferibile che i solai colleghino solo gli elementi del telaio SAM. Gli elementi solaio sono molto importanti per le analisi Pushover in quanto, come detto anche da premessa, permettono alla struttura di espletare un comportamento globale collegando rigidamente tra di loro tutti i nodi appartenenti al medesimo piano. Proprio a causa della loro importanza i controlli da effettuare su questi elementi sono diversi:

  • Corretta connessione ai nodi: può capitare che nella generazione automatica dei solai alcuni nodi vengano esclusi a causa di impercettibili scostamenti dal piano, o che a essere collegati ai solai siano i nodi dei pannelli SAM e non i nodi degli elementi rigidi/maschi sovrapposti ai pannelli. Per verificare questa cosa, selezionare il solaio e fare “Tasto DX > Visualizza > Isola Topologia” in modo da isolare e selezionare il solaio con i nodi a cui esso è collegato, per poi riattivare tutto il modello. Così facendo è immediato notare se tutti i nodi presenti in corrispondenza del solaio sono selezionati e quindi collegati al solaio o sono rimasti fuori. Per correggere il problema occorre selezionare tutti i solai e utilizzare il comando “Tasto DX > Collega elemento”, il software dovrebbe restituire per conferma il messaggio “Topologia modificata per n solai”. Ripetere il controllo, nel caso il problema persista occorre generare manualmente i solai incriminati selezionando uno ad uno i nodi corretti.
  • Completezza della mesh dei solai rigidi (poco frequente): è possibile visualizzare le mesh che compongono i piani rigidi tramite “Preferenze > Opzioni elementi > Elementi solaio mesh” per verificare che siano complete, in quanto può capitare che uno degli elementi necessari non venga generato, comportando poi errori in fase di calcolo. Per risolvere il problema è sufficiente discretizzare l’elemento su cui poggia il solaio in prossimità della zona esclusa dalla mesh.
  • Scarichi: Grazie al comando “Mostra scarichi” attivabile dal contesto di introduzione dati è possibile visualizzare gli scarichi dei solai di colore azzurro per i solai appoggiati, viola per i solai a mensola e rosso per i solai che non poggiano da alcuna parte. Oltre allo scarico dei solai il comando evidenzia anche lo scarico dei pannelli SAM che all’occorrenza potrebbe essere rosso: in tal caso, rigenerare le pareti tramite il comando “RIGENERA pareti” dal menù dei comandi di PRO_SAM che agisce su tutte le pareti visibili.

Si ricorda ancora una volta di fornire il piano rigido ai solai seppur di spessore minimo.

3_ CHECK IMPALCATI: Attivare la numerazione degli impalcati per verificare che questi siano correttamente distinti. La presenza di elementi trave inclinati per la rappresentazione di controventi o di scale comporta l’unificazione degli impalcati connessi dai suddetti elementi sotto lo stesso identificativo, andando di conseguenza a falsare la generazione delle spinte per l’analisi Pushover. Per ovviare il problema si può valutare di modellare suddetti elementi tramite elementi asta anziché trave, i quali non comportano lo stesso problema.

4_ CHECK NODI: Attivare la numerazione dei nodi e controllare la struttura da vicino per verificare che non siano presenti nodi quasi sovrapposti, ovvero a una distanza molto piccola ma comunque superiore al valore di tolleranza per cui due nodi sono considerati sovrapposti. Se presenti verificarne le causa e unificare i due nodi. È anche possibile utilizzare il comando dal contesto di “Introduzione dati > Preferenze > Tolleranze > Min. Scostamento nodi” per aumentare questo valore di tolleranza e unificare i nodi troppo vicini (si consiglia comunque di non eccedere il centimetro).

5_ CHECK SPOSTAMENTI: Le analisi non lineari possono essere molto onerose dal punto di vista computazionale, quindi conviene eseguire una analisi preliminare con le sole combinazioni dei carichi statici (pulsante 1). Come per tutti i modelli e tutte le analisi, il primissimo controllo deve essere effettuato sulla deformata della struttura sottoposta ai carichi verticali (che potrebbe evidenziare spostamenti elevati dati da una mancanza di vincoli, dalla presenza di elementi orizzontali poco rigidi, oppure elementi non correttamente collegati). Per risolvere eventuali problemi vincolare opportunamente la struttura sia esternamente che internamente utilizzando se necessario elementi infinitamente rigidi per la trasmissione delle sollecitazioni.

6_ VERIFICA AI CARICHI VERTICALI: Sempre con le combinazioni dei carichi statici andare nel contesto assegnazione dati di progetto e verificare la struttura: nel caso in cui buona parte dei maschi murari della struttura risultino non verificati ai soli carichi verticali sarà molto difficile che le analisi Pushover riescano a portare dei risultati. Questo perché la struttura, prima di essere caricata con le spinte definite al paragrafo 7.3.4.2 delle NTC2018 e in accordo con lo stesso, viene caricata progressivamente con i carichi gravitazionali e nel caso in cui siano questi ad aprire le cerniere plastiche è normale che al primo step di carico orizzontale la struttura vada in labilità quasi immediata.

7_ CHECK ELEMENTI IN TRAZIONE: Non essendo la muratura resistente a trazione la presenza di elementi maschi portanti con sforzo normale positivo comporta un problema per le analisi, oltre ad evidenziare un chiaro errore di modellazione. Per verificare la cosa occorre isolare tutti gli elementi maschio per visualizzare poi lo sforzo normale su di essi. È possibile individuare quelli che vanno in trazione (se presenti) inserendo 0 nel valore inferiore della legenda e premendo poi “Range”, così da lasciare a schermo il grafico dello sforzo normale solo dove questo ha valore positivo (aumentare la scala di sollecitazione per facilitarsi). Successivamente bisogna risolvere le cause di questa trazione indagando sugli elementi adiacenti che potrebbero trasmettere sollecitazioni indesiderate (es. parete adiacente ortogonale flessa fuori piano) o sugli elementi inferiori che potrebbero non fornire il corretto supporto (es. maschi privi di vincolo alla base o poggiati su travi di scarsa rigidezza). Per fare ciò può essere utile aiutarsi visualizzando la deformata unifilare.

8_ CHECK SPOSTAMENTI PER COMBINAZIONI SISMICHE: Una volta superati i primi controlli si può procedere alle analisi lineari con carichi semplificati, utilizzando solo 4 casi di carico nelle 2 direzioni principali per entrambi i versi prive di eccentricità, in modo da assicurarci che la struttura sia modellata correttamente. Ora si procede con un controllo sulla deformata della struttura sottoposta ai carichi sismici, che è già disponibile prima di eseguire le analisi non lineari e potrebbe evidenziare spostamenti elevati dati da una mancanza di vincoli, dalla presenza di elementi orizzontali poco rigidi, oppure mancata connessione tra le pareti e gli elementi rigidi della struttura. Gli spostamenti per le azioni sismiche sono disponibili prima delle analisi di Pushover perché, allo scopo di controllare il modello, PRO_SAP applica una forza sismica con una accelerazione di 1g.

9_ ESCLUDI NON LINEARITÀ: È ora possibile aprire il pannello di controllo di PRO_SAM per eseguire le analisi incrementali attivando l’opzione “Escludi non linearità”, aprire il monitor analisi e controllare di nuovo la deformata della struttura con comportamento lineare, ma sottoposta ad azioni orizzontali incrementali. Nel caso di esito positivo delle analisi si può ora rimuovere la spunta appena inserita per effettuare le effettive analisi non lineari.

10_ SOTTOMODELLI: Se una volta eseguiti i controlli precedenti le analisi non arrivano a convergenza o danno spostamenti eccessivi, una buona pratica di controllo consiste nell’eliminare progressivamente parti di struttura per far poi girare le analisi, così da riuscire a localizzare all’interno del modello quali sono gli elementi che ne bloccano il funzionamento. È possibile partire eliminando l’ultimo piano e procedendo verso i piani inferiori. Nel momento in cui le analisi forniscono risultati e quindi si identifica il piano in cui è presente l’anomalia si procede eliminando solo blocchi di piano e facendo rigirare le analisi seguendo quindi il medesimo principio, fino ad arrivare a determinare il blocco compromesso. Una volta capito in quale zona del modello si trova l’errore sarà più facile effettuare tutti i check precedenti focalizzandosi su quella sola zona.

Nel caso le analisi non arrivino a convergenza oppure diano anomalie nelle curve, si rende necessario agire sui parametri che governano le analisi e che ne possono variare l’esito, come descritto nel seguente articolo in cui oltre a chiarire il funzionamento delle impostazioni avanzati del pannello di controllo PRO_SAM viene descritto il procedimento di calcolo delle analisi Pushover per modelli a telaio equivalente di strutture in muratura.

Ing. Antonio Limena

limena@2si.it

Webinar sulla muratura armata

Fornaci Danesi sta organizzando una serie di Webinar sulla muratura armata: “Modellazione e calcolo strutturale di un edificio in muratura armata Normablok Più” nella giornata di Giovedì 09 luglio ore 16:30 è previsto l’intervento di 2 S.I.

CLICCA QUI per vedere il video con l’applicazione di PRO_SAP e PRO_SAM.

La muratura armata è una tecnologia che sta prendendo sempre più piede grazie al fatto che coniuga la sicurezza strutturale alle alte prestazioni termiche, inoltre ha ottima durabilità e non presenta le note problematiche di verifica dei nodi dei telai in CA che sono sorte con le recenti NTC 2018.

In questo articolo abbiamo introdotto il materiale e le sue principali caratteristiche, durante il webinar approfondiremo l’argomento. Vedremo una applicazione pratica di modellazione di un edificio partendo da zero per eseguire poi analisi lineari con PRO_SAP e non lineari con PRO_SAM.

I webinar sulla muratura armata, della durata di 1 ora, sono gratuiti. Sono disponibili 100 posti.

Per iscriversi è possibile cliccare qui.

Muratura armata

Novità PRO_SAM 2020

Questa settimana l’Università di Ferrara ha ospitato due seminari su PRO_SAM.

Nel primo l’ing. Venturini di 2S.I. ha fatto una applicazione pratica mostrando le novità su PRO_SAM tra le quali:

  • Nuove distribuzioni di forza multimodali e corrispondenti all’andamento delle forze.
  • Esportazione automatica dei cinematismi di piano verso PRO_CineM.
  • Generazione automatica del modello D3 con plate-shell per l’analisi delle fondazioni o per fare analisi lineari multimodali.

Nel secondo l’Ing. Paolo Morandi, uno degli autori di SAM II, ha approfondito gli aspetti teorici. Ha inoltre fornito utili strumenti per l’interpretazione dei risultati e il controllo delle curve.

5 cose da sapere PRIMA di analizzare i cinematismi locali nella muratura

PRO_CineM consente il calcolo automatizzato dei cinematismi locali nella muratura, sia con analisi cinematiche lineari che cinematiche non lineari.

Prima di fare l’analisi dei cinematismi è però bene avere le idee chiare sulla struttura, perché l’inserimento di taluni dettagli costruttivi può impedire l’attivazione di meccanismi.

1 Il comportamento monolitico

L’analisi dei cinematismi ha significato se è garantita una certa monoliticità della parete muraria, tale da impedire collassi puntuali per disgregazione della muratura.

Il rilievo e la determinazione della qualità muraria è fondamentale importanza: una muratura di scarsa qualità potrebbe attivare fenomeni di disgregazione PRIMA dell’attivazione dei cinematismi.

2 Meccanismi di I modo e di II modo

Si definiscono danni di I modo per azioni ortogonali al piano del muro, danni di II modo per azioni appartenenti al piano del muro. I meccanismi di I modo sono anche detti cinematismi locali.
Di nuovo il rilievo strutturale è fondamentale per la corretta descrizione del comportamento: la presenza di cordoli, catene e buon ammorsamento può impedire l’attivazione di cinematismi di I modo e quindi condurre verso un comportamento globale della struttura.

3 I dettagli costruttivi e il rilievo strutturale

Si può quindi identificare una gerarchia di attivazione dei meccanismi, a seconda della qualità muraria e della cura dei dettagli costruttivi.

Disgregazione -> Cinematismi locali -> Comportamento globale

4 La normativa

L’analisi dei cinematismi è prevista dalla Circolare 2 febbraio 2009 n. 617, al Punto C8.7.1.1:

“Quando la costruzione non manifesta un chiaro comportamento d’insieme, ma piuttosto tende a reagire al sisma come un insieme di sottosistemi (meccanismi locali), la verifica su un modello globale non ha rispondenza rispetto al suo effettivo comportamento sismico… In tali casi la verifica globale può essere effettuata attraverso un insieme esaustivo di verifiche locali.”

Anche la normativa pone l’accento sul fatto che deve essere il progettista ad identificare la costruzione per capire quale comportamento, se la costruzione non manifesta un chiaro comportamento d’insieme, quella dei cinematismi è l’analisi più adatta.

Tipicamente si affianca un’analisi globale ad esempio un’analisi di pushover a telaio equivalente che identifica i meccanismi globali alle analisi dei cinematismi locali che identificano i collassi fuori dal piano. In questo modo, per una muratura di buona qualità, si ottengono le verifiche sia locali che globali.

5 Quali meccanismi si attiveranno?

Una volta deciso di indagare i cinematismi locali è importante capire quali cinematismi si attiveranno.

In letteratura sono ampiamente descritti i cinematismi possibili: ribaltamento semplice, ribaltamento composto, flessione verticale, …

Naturalmente la presenza di cordoli, catene e buon ammorsamento con le pareti trasversali modifica il comportamento della struttura impedendo l’attivazione di alcuni cinematismi.

È importare prestare attenzione in fase di input dei modelli nei software di calcolo perché la scelta di assegnare tiranti, buon ammorsamento con le pareti ortogonali o cordoli modifica il risultato dell’analisi.

Ad esempio, la presenza di un cordolo in C.A. efficacemente ammorsato al piano rigido del solaio impedisce l’attivazione dei meccanismi di ribaltamento semplice, di seguito alcune immagini esplicative tratte dal software PRO_CineM.

In questa presentazione tenuta al Ministero della Difesa dal Professor G. Milani del Politecnico di Milano è illustrata una trattazione delle verifiche dei cinematismi, con anche esempi pratici.

Ing. Gennj venturini

venturini@2si.it

Muratura: criticità e ottimizzazione dei modelli lineari

Muratura: analisi lineariLe strutture in muratura possono essere verificate con analisi lineari oppure non lineari (paragrafo 4.5.5, NTC 2018), in questo post ci occuperemo di analisi lineari, in particolare della individuazione delle criticità e ottimizzazione dei modelli realizzati con elementi plate-shell (D3, in PRO_SAP).

Nei modelli con elementi D3 è importante prestare attenzione alla geometria.

Per le verifiche PRO_SAP integra le tensioni locali fino a ottenere le AZIONI MACRO con le quali fa le verifiche, le azioni macro sono ottenute per sezioni orizzontali, quindi la geometria deve essere meno distorta possibile

Sono da considerarsi mesh distorte quelle con angoli molto acuti (ad esempio < 30°) o molto ottusi (ad esempio > 150°), queste hanno una minore accuratezza e PRO_SAP avverte durante il check della loro eventuale presenza: meglio utilizzare mesh più quadrate possibile e con nodi allineati in orizzontale, anche per agevolare l’operazione di integrazione.

Geometria: la mesh

La geometria:

  1. Non deve avere mesh distorte
  2. Deve avere i nodi per quanto possibile allineati in orizzontale
  3. È possibile modellare solo i maschi murari oppure anche le travi di accoppiamento dei maschi
  4. Le pareti in falso sono da evitare
Geometria: le eccentricità

eccentricità

La normativa dice di considerare per la muratura 3 eccentricità, vediamole nel dettaglio.

es1 data dall’eccentricità dei piani superiori –> FILO FISSO di tipo allineamento nel caso ci siano variazioni di spessore. I fili fissi sui D3 hanno effetto sulle azioni.

es2 data dall’eccentricità dell’appoggio del solaio à si può modellare assegnando un momento d’incastro dei solai (si veda documentazione di affidabilità, Test 113 VERIFICA NON SISMICA DELLE MURATURE)

ea dovuta alle tolleranze di esecuzione, PRO_SAP la considera in automatico

ev dovuta alle azioni orizzontali è ottenuta in automatico da PRO_SAP utilizzando le azioni macro (e=Mo/N)

Geometria: gli svincoli

Può essere utile inserire degli svincoli:

SVINCOLI su elementi D2: simulano il fatto che le travi sono incernierate alle pareti

SVINCOLI su elementi D3: simulano un comportamento a cerniera fuori dal piano delle pareti, che lavoreranno prevalentemente per sollecitazioni complanari (ad esempio un cerniera al piede della parete).

Geometria: i solai

PRO_SAP consente di assegnare ai solai la proprietà “piano rigido”, che viene modellato con elementi membrana e aiuta a conferire comportamento scatolare alla struttura.

La bidirezionalità dei solai serve invece a simulare il fatto che in alcune condizioni (ade esempio presenza di soletta con rete) i solai non sono perfettamente monodirezionali, ma una certa percentuale del carico viene assegnata anche alle pareti parallele alla direzione di orditura.

Riassumendo:
  • Modellare, se necessario, tutte le eccentricità
  • Assegnare, se necessario, gli svincoli agli elementi D2 e D3
  • Assegnare, se presente, il piano rigido ai solai
  • Assegnare, se possibile, la bidirezionalità ai solai

Una attenzione particolare va dedicata ai criteri di progetto che consentono di personalizzare -tra l’altro-  le altezze d’interpiano, le snellezze limite e il fattore di vincolo laterale.

E se le verifiche non risultano soddisfatte?

Può capitare che anche applicando tutte le accortezze di modellazione le verifiche non risultino soddisfatte. Questo perché, specialmente negli edifici esistenti, le pareti resistenti sono poche o sono molto sollecitate. La muratura lavora bene quando è caricata sufficientemente da carichi verticali e quando la struttura ha un comportamento scatolare. Inoltre le verifiche delle travi di collegamento tra i maschi tipicamente sono molto severe. Un controllo dei risultati della progettazione fornisce le indicazioni al progettista sulle criticità della struttura.

 

 

Controllo dei risultati e giudizio motivato di accettabilità per strutture in muratura

Grazie a tutti gli amici che hanno partecipato all’evento parallelo dell’International Masonry Conference dedicato ai software di calcolo.

È stata una bella occasione di incontro tra il mondo dell’università e quello della professione.

In questa presentazione abbiamo dedicato particolare attenzione al controllo dei risultati e al giudizio motivato di accettabilità, riteniamo infatti importante chiarire quale è il ruolo del progettista e quale è il ruolo del software. I programmi di calcolo non devono e non vogliono sostituirsi al progettista, che deve sempre avere strumenti per il controllo e la valutazione dei risultati.

Per chi non è potuto passare a trovarci, ecco il video della presentazione.